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Abstract A general equation was derived describing the com- 
plete and exact dissolution profile of powders under sink condi- 
tions. It is applicable to powders having any initial particle-size 
distribution, with particles dissolving according to any explicit 
equation. It was applied to develop an equation for the dissolution 
of log-normal powders that is more generally applicable than pre- 
vious approaches. The effect of change in initial particle-size dis- 
tribution parameters on the dissolution profile is illustrated. 
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Several investigators (1-4) considered the problem 
of exactly describing the dissolution profile of pow- 
ders in relation to their particle-size distribution. 
These authors have been concerned with powders ini- 
tially consisting of particles with log-normal size dis- 
tribution. Earlier attempts made use of approxima- 
tions (1) or computer simulations (2). More recently, 
Brooke (3) developed an equation that permits calcu- 
lation of the dissolution profile of such powders with- 
out the aid of a computer. This equation was later 
presented in a form to account for truncated log-nor- 
ma1 distributions (4), but in this paper it is shown not 
to be generally applicable for all timelengths. 

A general equation that exactly describes the en- 
tire dissolution profile of powders under sink condi- 
tions would be of considerable value. Such an equa- 
tion should be valid for particles having any initial 
size distribution and dissolving according to any ex- 
plicit equation. In particular, it should be applicable 
to the dissolution of log-normal powders, which are 
frequently encountered. 

THEORY 

Consider a powder consisting of particles which initially ( t  = 0)  
has a weight density (probability) distribution fofwo). Let the par- 
ticles dissolve independently of each other according to: 

w = g(wo,t,A) 0%. 1) 

where w and wo are the particle weights at time t and t = 0, re- 
spectively; and A represents collectively the dissolution parame- 
ters such as solubility, particle density, and the particle shape fac- 
tor. The inverse dissolution function is defined as: 

WIJ = g- ' (wLA) (Eq. 2) 

Using the rules of transformation of independent variables (5), the 
particle weight density function at  time t becomes: 

For Eq. 3 to hold, the following conditions for g must be satis- 
fied: (a) g-' must be a strictly increasing function of w for all t 
values, (b) g must decrease strictly with time until equal to zero, 
and (c) g must remain equal to zero beyond that time. The latter 
two conditions ensure that the dissolution function reflects the ac- 
tual physical conditions of the dissolution process. The first condi- 
tion will rarely be violated because, in application, g is nearly al- 
ways a strictly increasing function of wo for all t values. It is ob- 
vious that the second condition must be met by any dissolution 
equation. 

The third condition is not satisfied for most equations in the lit- 
erature (1,6,7). To overcome this problem, it is necessary to rede- 
fine the particle weight density function such that it is generally 
applicable: 

f ( w )  = 0 for w I 0  0%. 46) 
where division by the integral is necessary to satisfy the condition 
that the total integral (from --OD to +m) of f f w )  must be equal to 1. 

The weight of undissolved powder, W, at any time, t ,  is equal to 
the product of the number of particles remaining, Nt, and the 
mean particle weight, which for a large number of particles is the 
same as the expected value of w, E,(w). Therefore, the following 
general equation can be written: 

W = N i E i ( w )  (Eq. 5) 

The number of particles remaining at time t is: 

N ,  = N o J w h ( w ) d w  0%. 6 )  

where the initial number of particles, NO, is equal to the initial 
powder weight, Wo, divided by the initial mean particle weight: 

The mean particle weight at time t is given by: 

E,(w) = j - :w f (wk lu l  

which, according to Eq. 4a, can be written: 

I " ' w h (  wklw 

E'(w) = l " ' h ( l c ) d w  

Substituting Eqs. 6, 7, and 9 into Eq. 5 yields: 

(Eq. 8 )  

(Eq. 9) 

This equation relates to unbounded particle weight distributions. 
In practice, the distribution is always bound, so the limits of inte- 
gration must be changed accordingly. 

d h (w)  = f o [ g - ' ( w f P ) l z  g 7 w f , A )  (Eq' 3, 
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Let mo and Mo denote the initial weights of the smallest and 
largest particle, respectively'. These values then represent the 
lower and upper boundaries, respectively, of fo(wa); f (w)  will be 
correspondingly bounded by Pg(mo,t,A) and Pg(Mo,t,A). The op- 
erator P is introduced to ensure that the limits are never negative. 
Therefore, by definition, P is equal to 1 in the time period before 
the operand becomes zero and is equal to zero beyond that time. 
When these limits are introduced into Eq. 10 and h(w) is written 
according to Eq. 3, the following expression is obtained 

If g-'(w,t,A) and wo in the integrals are considered as dummy 
variables and called x ,  Eq. 11 simplifies to: 

Because of this transformation and the properties of the operator 
P, the limits of integration, LI and Lp, have the following values: 

L1 = mo 
L1  = g-l(O,t,A) 
L,  = M I ,  
L1 = g-YO$.A) 

for  t such that  Pg(m&A) > 0 
for t such that Pg(m&A)  = 0 
for t such that P g ( M & 4 )  > 0 
for t such that  Pg(Mo$,A) = 0 

(Eq. 126) 
(Eq. 12c) 
(Eq. 12d) 
(Eq. 12e) 

The time at  which g(mo,t,A) = 0 is the critical time, that is, the 
time when the dissolving particles begin to disappear. When 
g(Mo,t,A) = 0, all particles are dissolved. Beyond that time, L I  = 
L2, thus making W/Wo equal to zero. 

Equation 12a requires knowledge of the initial weight distribu- 
tion fo(wo), but more often the initial size distribution is of great- 
est interest. Consider particles that are spherical and remain so 
during the dissolution; in this case, w = pra3/6, where p and a are 
the particle density and diameter, respectively2. Transformation in 
Eq. 11 from the initial weight distribution to the initial size distri- 
bution is then easily achieved; and by a similar procedure to that 
used to obtain Eq. 12a from Eq. 11, the following equation is de- 
rived 

where: 

for t such that  P g  -dd,t,A > 0 

(Eq. 1%) 
Rl = do ?: ) 
RI = [ ~ g - l ( O f , A ) ]  6 for t such that P g ( F d $ $ , A )  = 0 

111 

(Eq. 12) 

R? = Do for t such that P g ( F D d t s l )  > 0 

(Eq. 13d ) 
111 6 ] for t such that Pgr$ D,3$,A) = 0 

R2 = [ ~~ g-It0,t.A) 
P* 

(Eq. 13e) 

These values are not intended to he absolute hut rather represent limits 
giving the best fit when the actual particle distribution is approximated hy 
any particular function. Therefore, they also represent truncation limits of 
the function. 

The derivation is valid for particles of other shapes as long as they re- 
main unchanged during dissolution and an appropriate shape factor is used 
in place of r/6.  

In Eq. 13a, do and DO are initial diameters of the smallest and 
largest particles, respectively'; lo is the initial particle-size density 
function. 

Equations 12a and 13a rigorously describe the entire dissolution 
profile of any powder if its initial particle weight density function, 
fo, or initial particle-size density function, lo, is known, together 
with the particle dissolution function, which can be any explicit 
expression. With appropriate choice of limits of integration, the 
equations are applicable to truncated as well as "ideal" distribu- 
tions. The time-dependent integral in the numerator of Eqs. 120 
and 13a reduces to the constant integral in the denominator a t  
zero time, thus making the ratio WIWo equal to 1 as expected. 

RESULTS AND DISCUSSION 

The general mathematical models expressed by Eq. 12a or 13a 
require the use of a computer for numerical evaluation because 
they are in integral form. However, if the initial particle weight or 
particle-size distribution can be approximated by some simple 
function, then the model can often be solved in terms of an expres- 
sion suitable for evaluation without the use of a computer. 

Consider a powder consisting of spherical particles of initial di- 
ameters ao, distributed such that In a0 approximates a normal dis- 
tribution with mean p and standard deviation u, truncated at  In do 
= p - iu and In DO = p + j o ,  where i and j are truncation parame- 
ters. The density function of In a0 is then given by: 

N(ln a,pp) 
u(ln 4 = /.," 

p - ia Q h a ,  < p + j a  (Eq. 14) 

where the normal density function N is defined as N ( x , p , a )  = [l/(u 
&)]exp[- ( x  - fi)2/2u2]. Because the distribution is truncated, 
the integral in Eq. 14 is introduced to satisfy the requirement that 
the total integral of u(ln ao) must be equal to 1. By using standard 
transformation techniques (5). the initial particle-size density 
function, lo, then becomes: 

Let the particles dissolve according to the Hixson-Crowell (6) cube 
root law: 

= ( w , l / 3  - k t ) s  0%. 16) 

where k is a positive constant. The inverse dissolution function is 
then: 

w0 = (wll:J + ktY (Eq. 17) 

After the initial particle-size distribution (Eq. 15) and the particle 
dissolution equation (Eq. 16 and its inverse Eq. 17) are defined, 
the relationship giving the dissolution profile can then be derived 
by means of Eq. 13a (for derivation, see Appendix): 

["" - 2a) - F ( V  - lo)] -"--*?', - x3(Kt) F ( j  - 3u) - F ( - i  - 3u) 

where: 
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Figure 3-Effect of upper end truncation on the dissolution pro- 
file of powders having a log-particle diameter distribution that is 
normal, with a = 0.5, and truncated at p - 10a and fi  + j a, where 
j = 0.25 (a), 0.5 (b), 1 (c), and 10 (d). 
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Figure 1-Plot of the cube root of fraction undissolved versus 
e-"Kt for hypothetical log-normal powder, with a = 0.3 and trun- 
cated at  f i  f 2a (i = j = 2). The unbroken curve is calculated ac- 
cording to Eq. 18a, and the stippled curve is calculated according 
to a n  equation given by Brooke (4). 

TI = p - iu 
TI = In Kt 

T, = p + Ju 
T P  = In Kt 

for In Kt  S p - ia 
for In Kt > p - zu 
for In K t  S p + Ju 

for In Kt > p + Ja 

(Eq. 186) 
(Eq. 1&) 
(Eq. 18d) 
(Eq. 18e) 

The function, F, is the commonly tabulated area under the stan- 
dard normal curve function, defined by: 

(Eq. 19) 

The positive constant, K, is used for simplification in place of the 
expression ( 6 / ~ r ) ' / ~ k .  The change in TI at  timelength Kt = eu-'" 
(critical time) corresponds to the time when the smallest particles, 
initially having a diameter do = eg-'", begin to disappear. The 
change at  K t  = ep+J' (= Da) signifies the end of the dissolution 
process, so W/Wo becomes zero after that timelength. 

Equation 18a describes the complete dissolution profile of log- 
normal powders and any sieve fraction of such powders. It assumes 
that the particles dissolve according to the cube root law (Eq. 16), 
which also can be written in the form a = a0 - ( 6 / ~ r ) ~ / ~ k t  or a = 
a0 - Kt  for spherical particles, where a0 and a are the particle di- 
ameters a t  times zero and t, respectively. This relationship is simi- 
lar to the equation a = a0 - T used previously (2-4) in which T de- 
notes the timelength. 

Brooke (4) derived an equation similar to Eq. 18a for log-normal 
powders. Directions were given for the changes required in the 
equation at  the critical time. However, in his equation the first 
term is constant, equal to 1. Therefore, his equation is incorrect if 
applied to dissolution after the critical time. The error so intro- 

0 2 4 
e T K r  

6 

Figure 2-Effect of the particle-size distribution parameter, a, 
on plots of the cube root of fraction undissolved versus e-"Kt, cal- 
culated according to Eq. 18a for hypothetical ideal (i = j = 10) 
log-normal powders. Key: A, a = 0; B, a = 0.2; C, a = 0.4; and D, a 
= 0.7 

duced becomes quite substantial for large timelengths and large 
values of a. 

Brooke calculated values of W/Wo for various values of r/eP (the 
latter terminology corresponds to e-Mt used here). This proce- 
dure represents an ingenious method of "scaling time" (by the fac- 
tor e-MK) so the dissolution profile becomes independent of the 
parameters fi  and k (Eq. 16) and only depends on a, enabling the 
effect of a alone to be assessed. In this work, however, cube root- 
type plots of (W/Wa)'/3 versus e-'Kt are used for better compari- 
son with the fundamental particle dissolution equation (Eq. 16), 
which obeys the cube root law. 

Figure 1 shows such a plot for powders truncated at  p f 20 (i = j 
= 2) and having a = 0.3. The curvature of the unbroken line, cal- 
culated according to Eq. 18a, is logically expected. The stippled 
line represents the dissolution profile calculated according to 
Brooke's equation (Eq. 4 of Ref. 4)3. The two profiles are, as ex- 
pected, identical until critical time (e-CKt = 0.5488), but the later 
part clearly demonstrates the limitation of his equation. 

Figure 2 demonstrates the effect of a on the dissolution profile 
for a powder initially having an ideal distribution (i = j = 10). 

0 2 4 6 8 
e-pKt 

Figure 4-Effect of lower end truncation on the dissolution pro- 
file of powders having a log-particle diameter distribution that is 
normal, with a = 0.5, and truncated at  p - ia and p + 100, where 
i = 0.25, 0.5, 1,  and 10. The four curves are essentially coinciden- 
tal. 

A Cyber 76 digital computer equipped with Calcomp plotter was used 
for calculations and plots. Numerical evaluations were tested to six digits. 
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Powders of uniform particle size, ie., u = 0, give linear cube root 
plots as expected, while the deviation from linearity is significant 
for larger u values. An increase in u results in a decrease in the ini- 
tial slopes of the curves, which is consistent with calculations made 
by Brooke (4). Among powders having the same logarithmic mean 
diameter, p, those with broadest distribution will have the slowest 
initial release rate. 

Figures 3 and 4 show the effect of truncation on the dissolution 
profile when the initial log (particle diameter) - distribution ap- 
proximates a normal distribution (a = 0.5) with various degrees of 
upper (Fig. 3) and lower (Fig. 4) end truncation. Comparison of the 
two figures indicates that  the effect of truncation at the low end is 
very small and considerably less than that of truncation at  the 
upper end. The curves for i = 10, 1, 0.5, and 0.25 are so close that 
they are coincidental in the plot (Fig. 41, while they are clearly sep- 
arate for j = 10, 1, 0.5, and 0.25 in Fig. 3. Figure 3 also shows that 
the magnitude of the slopes of the curves increases with increasing 
truncation. The most marked effect of truncation a t  the upper end 
is that  the time for complete dissolution is drastically reduced. 

APPENDIX 

After inserting Eqs. 15, 16, and 17 into Eq. 13a, the integral in 
the numerator, I,, of Eq. 13a becomes: 

I t  was indicated previously that WIWO = I,,/(Z,Jt=o. By using this 
fact, WIWO can be written: 

In Eq. A2, the time-independent integral in the denominator is 
equal to the time-dependent integral in the numerator evaluated 

a t  zero time. To evaluate the numerator of Eq. A2, employing a 
technique similar t o  that used to derive the moment-generating 
function for a normal distribution (5), the following useful equa- 
tion can be obtained, which is similar t o  Eq. 12 given by Brooke 
(3): 

where the function, F, is the area under the standard normal curve 
function given by Eq. 19. Thus, to evaluate the numerator, I, in 
Eq. A2, (w - KtJ3w-' is expanded as w2 - 3(Kt)w + 3(KtJ2 - 
(Ktj3w-' [letting K = ( 6 / p ~ ) ' / ~ k  for simplicity]. The formula is 
then applied term by term by putting s = 2, 1, 0, and -1; r = R2; 
and q = R1 and by treating t as a constant for purposes of integra- 
tion. Equation 18a is then derived using WIWO = Il(I)t=o and not- 
ing that In do = p - iu  and In Do = p + j u .  
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